19 resultados para Pests of plants

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adult diamondback moths (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae), inoculated with the fungus Zoophthora radicans, were released within a large field cage containing DBM-infested potted broccoli plants. Larvae and pupae on exposed and caged control plants were examined on five occasions over the next 48 days for evidence of Z. radicans infection. Infected larvae were first detected on exposed plants 4 days after the initial release of adults, and after 48 days the infection level reached 79%. Aerially borne conidia were a factor in transmission of the fungus. Infection had no effect on possible losses of larval and adult cadavers due to scavengers in field crops. In a trial to measure the influence of infection on dispersal, twice as many non-infected as infected males were recaptured in pheromone traps, although the difference in cumulative catch only became significant 3 days after release of the males. In a separate experiment, when adult moths were inoculated with Beauveria bassiana conidia and released into the field cage, DBM larvae collected from 37 of 96 plants sampled 4 days later subsequently died from B. bassiana infection. The distribution of plants from which the infected larvae were collected was random, but the distribution of infected larvae was clustered within the cage. These findings suggest that the auto-dissemination of fungal pathogens may be a feasible strategy for DBM control, provided that epizootics can be established and maintained when DBM population densities are low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soapberry bugs are worldwide seed predators of plants in the family Sapindaceae. Australian sapinds are diverse and widespread, consisting of about 200 native trees and shrubs. This flora also includes two introduced environmental weeds, plus cultivated lychee (Litchi chinensis Sonn.), longan (Dimocarpus longan Lour.) and rambutan (Nephelium lappaceum L.). Accordingly, Australian soapberry bugs may be significant in ecology, conservation and agriculture. Here we provide the first account of their ecology. We find five species of Leptocoris Hahn in Australia, and list sapinds that do and do not serve as reproductive hosts. From museum and field records we map the continental distributions of the insects and primary hosts. Frequency of occupation varies among host species, and the number of hosts varies among the insects. In addition, differences in body size and beak length are related to host use. For example, the long-beaked Leptocoris tagalicus Burmeister is highly polyphagous in eastern rainforests, where it occurs on at least 10 native and non-native hosts. It aggregates on hosts with immature fruit and commences feeding before fruits dehisce. Most of its continental range, however, matches that of a single dryland tree, Atalaya hemiglauca F. Muell., which has comparatively unprotected seeds. The taxon includes a smaller and shorter-beaked form that is closely associated with Atalaya, and appears to be taxonomically distinct. The other widespread soapberry bug is the endemic Leptocoris mitellatus Bergroth. It too is short-beaked, and colonises hosts phenologically later than L. tagalicus, as seeds become more accessible in open capsules. Continentally its distribution is more southerly and corresponds mainly to that of Alectryon oleifolius Desf. Among all host species, the non-native environmental weeds Cardiospermum L. and Koelreuteria Laxm. are most consistently attacked, principally by L. tagalicus. These recent host shifts have biocontrol implications. In contrast, the sapinds planted as fruit crops appear to be less frequently used at present and mainly by the longer-beaked species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Foliar application may be used to supply boron (B) to a crop when B demands are higher than can be supplied via the soil. While B foliar sprays have been used to correct B deficiency in sunflower (Helianthus annuus L.) in the field, no studies have determined the amount of B taken up by sunflower plant parts via foliar application. A study was conducted in which sunflower plants were grown at constant B concentration in nutrient solution with adequate B (46 mum) or with limited B supply (0.24, 0.40 and 1.72 mum) using Amberlite IRA-743 resin to control B supply. At the late vegetative stage of growth (25 and 35 d after transplanting), two foliar sprays were applied of soluble sodium tetraborate (20.8 % B) each at 0, 28, 65, 120 and 1200 mm (each spray equivalent to 0, 0.03, 0.07, 0.13 and 1.3 kg B ha(-1) in 100 L water ha(-1)). The highest rate of B foliar fertilization resulted in leaf burn but had no other evident detrimental effect on plant growth. Under B-deficient conditions, B foliar application increased the vegetative and reproductive dry mass of plants. Foliar application of 28-1200 mm B increased the total dry mass of the most B-deficient plants by more than three-fold and that of plants grown initially with 1.72 mum B in solution by 37-49 %. In this latter treatment, the dry mass of the capitulum was similar to that achieved under control conditions, but in no instance was total plant dry mass similar to that of the control. All B foliar spray rates increased the B concentration in various parts of the plant tops, including those that developed after the sprays were applied, but the B concentration in the roots was not increased by B foliar application. The B concentration in the capitulum of the plants sprayed at the highest rate was between 37 and 93 % of that in the control plants. This study showed that B foliar application was of benefit to B-deficient sunflower plants, increasing the B status of plant tops, including that of the capitulum which developed after the B sprays were applied. (C) 2003 Annals of Botany Company.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ATP-binding cassette (ABC) transporters are encoded by large gene families in plants. Although these proteins are potentially involved in a number of diverse plant processes, currently, very little is known about their actual functions. In this paper, through a cDNA microarray screening of anonymous cDNA clones from a subtractive library, we identified an Arabidopsis gene (AtPDR12) putatively encoding a member of the pleiotropic drug resistance (PDR) subfamily of ABC transporters. AtPDR12 displayed distinct induction profiles after inoculation of plants with compatible and incompatible fungal pathogens and treatments with salicylic acid, ethylene, or methyl jasmonate. Analysis of AtPDR12 expression in a number of Arabidopsis defense signaling mutants further revealed that salicylic acid accumulation, NPR1. function, and sensitivity to jasmonates and ethylene were all required for pathogen-responsive expression of AtPDR12. Germination assays using seeds from an AtPDR12 insertion line in the presence of sclareol resulted in lower germination rates and much stronger inhibition of root elongation in the AtPDR12 insertion line than in wild-type plants. These results suggest that AtPDR12 may be functionally related to the previously identified ABC transporters SpTUR2 and NpABC1, which transport sclareol. Our data also point to a potential role for terpenoids in the Arabidopsis defensive armory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mycorthizae play a critical role in nutrient capture from soils. Arbuscular mycorrhizae (AM) and ectomycorrhizae (EM) are the most important mycorrhizae in agricultural and natural ecosystems. AM and EM fungi use inorganic NH4+ and NO3-, and most EM fungi are capable of using organic nitrogen. The heavier stable isotope N-15 is discriminated against during biogeochemical and biochemical processes. Differences in N-15 (atom%) or delta(15)N (parts per thousand) provide nitrogen movement information in an experimental system. A range of 20 to 50% of one-way N-transfer has been observed from legumes to nonlegumes. Mycorrhizal fungal mycelia can extend from one plant's roots to another plant's roots to form common mycorrhizal networks (CMNs). Individual species, genera, even families of plants can be interconnected by CMNs. They are capable of facilitating nutrient uptake and flux. Nutrients such as carbon, nitrogen and phosphorus and other elements may then move via either AM or EM networks from plant to plant. Both N-15 labeling and N-15 natural abundance techniques have been employed to trace N movement between plants interconnected by AM or EM networks. Fine mesh (25similar to45 mum) has been used to separate root systems and allow only hyphal penetration and linkages but no root contact between plants. In many studies, nitrogen from N-2-fixing mycorrhizal plants transferred to non-N-2-fixing mycorrhizal plants (one-way N-transfer). In a few studies, N is also transferred from non-N-2-fixing mycorrhizal plants to N-2-fixing mycorrhizal plants (two-way N-transfer). There is controversy about whether N-transfer is direct through CMNs, or indirect through the soil. The lack of convincing data underlines the need for creative, careful experimental manipulations. Nitrogen is crucial to productivity in most terrestrial ecosystems, and there are potential benefits of management in soil-plant systems to enhance N-transfer. Thus, two-way N-transfer warrants further investigation with many species and under field conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coral cays form part of the Australian Great Barrier Reef. Coral cays with high densities of seabirds are areas of extreme nitrogen (N) enrichment with deposition rates of up to 1000 kg N ha(-1) y(-1). The ways in which N sources are utilised by coral cay plants, N is distributed within the cay, and whether or not seabird-derived N moves from cay to surrounding marine environments were investigated. We used N metabolite analysis, N-15 labelling and N-15 natural abundance (delta(15)N) techniques. Deposited guano-derived uric acid is hydrolysed to ammonium (NH4+) and gaseous ammonia (NH3). Ammonium undergoes nitrification, and nitrate (NO3-) and NH4+ were the main forms of soluble N in the soil. Plants from seabird rookeries have a high capacity to take up and assimilate NH4+, are able to metabolise uric acid, but have low rates of NO3- uptake and assimilation. We concluded that NH4+ is the principal source of N for plants growing at seabird rookeries, and that the presence of NH4+ in soil and gaseous NH3 in the atmosphere inhibits assimilation of NO3-, although NO3- is taken up and stored. Seabird guano, Pisonia forest soil and vegetation were similarly enriched in N-15 suggesting that the isotopic enrichment of guano (delta(15)N 9.9parts per thousand) carries through the forest ecosystem. Soil and plants from woodland and beach environments had lower delta(15)N (average 6.5parts per thousand) indicating a lower contribution of bird-derived N to the N nutrition of plants at these sites. The aquifer under the cay receives seabird-derived N leached from the cay and has high concentrations of N-15-enriched NO3- (delta(15)N 7.9parts per thousand). Macroalgae from reefs with and without seabirds had similar delta(15)N values of 2.0-3.9parts per thousand suggesting that reef macroalgae do not utilise N-15-enriched seabird-derived N as a main source of N. At a site beyond the Heron Reef Crest, macroalgae had elevated delta(15)N of 5.2parts per thousand, possibly indicating that there are locations where macroalgae access isotopically enriched aquifer-derived N. Nitrogen relations of Heron Island vegetation are compared with other reef islands and a conceptual model is presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rms2 and rms4 pea ( Pisum sativum L.) branching mutants have higher and lower xylem-cytokinin concentration, respectively, relative to wild type (WT) plants. These genotypes were grown at two levels of nitrogen (N) supply for 18 - 20 d to determine whether or not xylem-cytokinin concentration (X-CK) or delivery altered the transpiration and leaf growth responses to N deprivation. Xylem sap was collected by pressurising de-topped root systems. As sap-flow rate increased, X-CK declined in WT and rms2, but did not change in rms4. When grown at 5.0 mM N, X-CKs of rms2 and rms4 were 36% higher and 6-fold lower, respectively, than WT at sap-flow rates equivalent to whole-plant transpiration. Photoperiod cytokinin (CK) delivery rates ( the product of transpiration and X-CK) decreased more than 6-fold in rms4. Growth of plants at 0.5 mM N had negligible (< 10%) effects on transpiration rates expressed on a leaf area basis in WT and rms4, but decreased transpiration rates of rms2. The low-N treatment decreased leaf expansion by 20 - 25% and expanding leaflet N concentration by 15%. These changes were similar in all genotypes. At sap-flow rates equivalent to whole-plant transpiration, the low N treatment decreased X-CK in rms2 but had no discernible effect in WT and rms4. Since the low N treatment decreased transpiration of all genotypes, photoperiod CK delivery rates also decreased in all genotypes. The similar leaf growth response of all genotypes to N deprivation despite differences in both absolute and relative X-CKs and deliveries suggests that shoot N status is more important in regulating leaf expansion than xylem-supplied cytokinins. The decreased X-CK and transpiration rate of rms2 following N deprivation suggests that changes in xylem-supplied CKs may modify water use.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

More than one hundred years ago, Grant Allen suggested that colour vision in primates, birds and insects evolved as an adaptation for foraging on colourful advertisements of plants-fruits and flowers. Recent studies have shown that well developed colour vision appeared long before fruits and flowers evolved. Thus, colour vision is generally beneficial for many animals, not only for those eating colourful food. Primates are the only placental mammals that have trichromatic colour vision. This may indicate either that trichromacy is particularly useful for primates or that primates are unique among placental mammals in their ability to utilise the signals of three spectrally distinct types of cones or both. Because fruits are an important component of the primate diet, primate trichromacy could have evolved as a specific adaptation for foraging on fruits. Alternatively, primate trichromacy could have evolved as an adaptation for many visual tasks. Comparative studies of mammalian eyes indicate that primates are the only placental mammals that have in their retina a pre-existing neural machinery capable of utilising the signals of an additional spectral type of cone. Thus, the failure of non-primate placental mammals to evolve trichromacy can be explained by constraints imposed on the wiring of retinal neurones.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This manuscript provides a summary of the results presented at a symposium organized to accumulate information on factors that influence the prevalence of acaricide resistance and tick-borne diseases. This symposium was part of the 19th International Conference of the World Association for the Advancement of Veterinary Parasitology (WAAVP), held in New Orleans, LA, USA, during August 10-14, 2003. Populations of southern cattle ticks, Boophilus microplus, from Mexico have developed resistance to many classes of acaricide including chlorinated hydrocarbons (DDT), pyrethroids, organ ophosphates, and formamidines (amitraz). Target site mutations are the most common resistance mechanism observed, but there are examples of metabolic mechanisms. In many pyrethroid resistant strains, a single target site mutation on the Na+ channel confers very high resistance (resistance ratios: >1000x) to both DDT and all pyrethroid acaricides. Acetylcholine esterase affinity for OPs is changed in resistant tick populations. A second mechanism of OP resistance is linked to cytochrome P450 monooxygenase activity. A PCR-based assay to detect a specific sodium channel gene mutation that is associated with resistance to permethrin has been developed. This assay can be performed on individual ticks at any life stage with results available in a few hours. A number of Mexican strains of B. microplus with varying profiles of pesticide resistance have been genotyped using this test. Additionally, a specific metabolic esterase with permethrin-hydrolyzing activity, CzEst9, has been purified and its gene coding region cloned. This esterase has been associated with high resistance to permethrin in one Mexican tick population. Work is continuing to clone specific acetylcholinesterase (AChE) and carboxylesterase genes that appear to be involved in resistance to organophosphates. Our ultimate goal is the design of a battery of DNA- or ELISA-based assays capable of rapidly genotyping individual ticks to obtain a comprehensive profile of their susceptibility to various pesticides. More outbreaks of clinical bovine babesisois and anaplasmosis have been associated with the presence of synthetic pyrethroid (SP) resistance when compared to OP and amidine resistance. This may be the result of differences in the temporal and geographic patterns of resistance development to the different acaricides. If acaricide resistance develops slowly, herd immunity may not be affected. The use of pesticides for the control of pests of cattle other than ticks can affect the incidence of tick resistance and tick-borne diseases. Simple analytical models of tick- and tsetse-bome diseases suggest that reducing the abundance of ticks, by treating cattle with pyrethroids for example, can have a variety of effects on tick-bome diseases. In the worst-case scenario, the models suggest that treating cattle might not only have no impact on trypanosomosis but could increase the incidence of tick-bome disease. In the best-case, treatment could reduce the incidence of both trypanosomosis and tick-bome diseases Surveys of beef and dairy properties in Queensland for which tick resistance to amitraz was known were intended to provide a clear understanding of the economic and management consequences resistance had on their properties. Farmers continued to use amitraz as the major acaricide for tick control after the diagnosis of resistance, although it was supplemented with moxidectin (dairy farms) or fluazuron, macrocyclic lactones or cypermethrin/ chlorfenvinphos. (C) 2004 Published by Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Baculoviruses are a group of viruses that infect invertebrates and that have been used worldwide as a biopesticide against several insect pests of the Order Lepidoptera. In Brazil, the baculovirus Spodoptera frugiperda multicapsid nucleopolyhedrovirus (SfMNPV, Baculoviridae) has been used experimentally to control S. frugiperda (Lepidoptera: Noctuidae), an important insect pest of corn (maize) fields and other crops. Baculoviruses can be produced either in insect larvae or in cell culture bioreactors. A major limitation to the in vitro production of baculoviruses is the rapid generation of mutants when the virus undergoes passages in cell culture. In order to evaluate the potential of in vitro methods of producing SfMNPV on a large-scale, we have multiplied a Brazilian isolate of this virus in cell culture. Extensive formation of few polyhedra mutants was observed after only two passages in Sf9 cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ketol-acid reductoisomerase (KARI; EC 1.1.1.86) catalyzes two steps in the biosynthesis of branched-chain amino acids. Amino acid sequence comparisons across species reveal that there are two types of this enzyme: a short form (Class 1) found in fungi and most bacteria, and a long form (Class 11) typical of plants. Crystal structures of each have been reported previously. However, some bacteria such as Escherichia coli possess a long form, where the amino acid sequence differs appreciably from that found in plants. Here, we report the crystal structure of the E. coli enzyme at 2.6 A resolution, the first three-dimensional structure of any bacterial Class 11 KARI. The enzyme consists of two domains, one with mixed alpha/beta structure, which is similar to that found in other pyridine nucleotide-dependent dehydrogenases. The second domain is mainly alpha-helical and shows strong evidence of internal duplication. Comparison of the active sites between KARI of E. coli, Pseudomonas aeruginosa, and spinach shows that most residues occupy conserved positions in the active site. E. coli KARI was crystallized as a tetramer, the likely biologically active unit. This contrasts with P. aeruginosa KARI, which forms a dodecamer, and spinach KARI, a dimer. In the E. coli KARI tetramer, a novel subunit-to-subunit interacting surface is formed by a symmetrical pair of bulbous protrusions.